Appendix E

Estimated O&M Cost Process Area Breakdown

This Page Intentionally Left Blank

Client: City of San Diego Job No.: 2072-78220 Computed By: A.Goh

Project: IPR/RA Demonstration Project AWP Facility

4/9/2012

Checked By: L. Voelz Date: Updated 6/7/2012

Updated 11/5/2012

Detail: Full-Scale Facility O&M Costs - 15 mgd Date Checked: 6/7/2012 Page No.: 1 of 2

INPUT

Power cost 0.12 \$/kWh
Hours of operation per day 24 hours
Days of operation per year 365 days
AWP Facility Online Factor 95%
Annual Average Flow 15 mgd

1) Equip	ment/Building Operations						
						Annual Power	Annual Cost
#	Load	HP	kW	# Operating	Demand	(kWh/yr)	(\$/yr)
1	AWP Facility Influent Pumps	137	102	3	100%	2,548,536	\$305,824
2	MF System Automatic Strainers	0.5	0	6	100%	18,650	\$2,238
3	MF Backwash Pumps	30	22	2	22%	80,815	\$9,698
4	MF System Blowers	50	37	1	22%	67,346	\$8,081
5	MF System Air Compressors	15	11	1	100%	93,248	\$11,190
6	MF CIP Recirculation/Drain Pumps	20	15	2	3.6%	8,856	\$1,063
7	MF System CIP Tank Heaters	24	18	2	28%	85,363	\$10,244
8	RO Booster Pumps	149	111	3	100%	2,777,506	\$333,301
9	RO Feed Pumps	572	427	3	100%	10,665,622	\$1,279,875
10	RO Energy Recovery (accounted for in RO Feed Pumps)				100%		
11	RO Flush Pumps	60	45	2	0.20%	1,480	\$178
12	RO System CIP Recirculation Pumps	40	30	2	0.27%	1,363	\$164
13	RO System CIP Tank Heaters	24	18	2	1.5%	4,378	\$525
14	UV	116	86	3	71%	1,540,759	\$184,891
15	Sodium Hypochlorite Feed Pump	0.5	0.37	3	100%	9,325	\$1,119
16	Ammonium Hydroxide Feed pump	0.5	0.37	3	100%	9,325	\$1,119
17	Sulfuric Acid Feed Pump	0.5	0.37	3	100%	9,325	\$1,119
18	Antiscalant Feed Pump	0.5	0.37	3	100%	9,325	\$1,119
19	Hydrogen Peroxide Feed Pump	0.5	0.37	3	100%	9,325	\$1,119
20	Calcium Chloride Feed Pump	0.5	0.37	2	100%	6,294	\$755
21	Caustic Soda Feed Pump	0.5	0.37	2	100%	6,294	\$755
22	Sodium Hypochlorite Feed Pump MF MC	0.5	0.37	1	14%	421	\$51
23	Sodium Hypochlorite Feed Pump MF CIP	0.5	0.37	1	0.9%	28	\$3
24	Sodium Bisulfite Feed Pump MF CIP	0.5	0.37	1	0.9%	28	\$3
25	Citric Acid Feed Pump for MF CIP	0.5	0.37	1	0.9%	28	\$3
26	Caustic Soda Feed Pump MF CIP	0.5	0.37	1	0.9%	28	\$3
27	Citric Acid Feed Pump RO CIP	0.5	0.37	1	0.09%	3	\$0
28	Caustic Soda Feed Pump RO CIP	0.5	0.37	1	0.09%	3	\$0
		Area	Unit Power	Total Power		Annual Power	Annual Cost
#	Load	(SF)	(kW/SF)	(kW)	Demand	(kWh/yr)	(\$/yr)
29	Multiple Buildings	50,700	0.01	482	100%	4,008,291	\$480,995
	Operations Subtotal					21,961,962	\$2,635,435

Client: City of San Diego
Project: IPR Project/Reservoir Augmentation Demonstration
Project AWP Project
Detail: Full-Scale Facility O&M Costs - 15 mgd

Poble A.Goh
Checked By: L. Voelz
Date: Updated 6/7/2012
Date Checked: 6/7/2012
Page No.: 1 of 2

,		Dose	Usage			Unit Cost	Annual Cost
#	Chemical	(mg/L)	(gal/day)	Usage (gal/yr)	Demand	(\$/gal)	(\$)
	Pre-/Post-Treatment						
1	Sodium Hypochlorite (Pre-treatment)	5.0	632	230,835	100%	0.66	\$144,734
2	Ammonium Hydroxide	1.5	163	59,426	100%	1.39	\$78,240
3	Sulfuric Acid	60.0	619	225,817	100%	1.39	\$298,191
4	Antiscalant	4.0	59	21,468	100%	6.49	\$132,359
5	Hydrogen Peroxide	5.0	126	46,002	100%	4.94	\$215,893
6	Calcium Chloride	20.0	640	233,718	100%	0.53	\$118,118
7	Caustic Soda	15.0	294	107,338	100%	2.35	\$239,641
8	Sodium Hypochlorite (Membrane Cleaning)	1000.0		1,441		0.66	\$951
9	Caustic Soda (Membrane Cleaning)	Varies		2,946		2.35	\$6,923
10	Citric Acid (Membrane Cleaning)	Varies		8,974		10.55	\$94,659
	Chemical Usage Subtotal						\$1,329,710

^{*}MF/RO CIP chemicals not included

3) Major Equipment Replacement Costs										
#	Equipment	Units/ Modules	Unit Cost (\$/unit)	Replacement (#/year)		Annual Cost (\$)				
1	MF Membrane Replacement ⁽¹⁾	1,084	\$ 3,000.00	0.14		\$441,167				
2	Cartridge Filter Replacement ⁽²⁾	6				\$72,818				
3	RO Element Replacement ⁽²⁾	3				\$245,759				
4	UV Lamp Replacement ⁽³⁾	1,296	\$268.00	0.7		\$225,474				
5	UV Ballast Replacement ⁽⁴⁾	648	\$636.00	0.14		\$55,932				
	Major Equipment Replacement Subtotal					\$1,041,149				

- (1) Assumes replacement every 7 years. Unit cost provided by MF manufacturer (Pall).
- (2) Based on information from similar sized AWPF.
- (3) Assumes 8200 hours of lamp operation per year. Per vendor (Trojan): 12,000 hours life per lamp. Unit cost provided UV manufacturer (Trojan)
- (4) Assumes replacement every 7 years. Unit cost provided by UV manufacturer (Trojan).

4) Maintenance Cost										
			Equipment				Annual Cost			
#	ltem	Percentage	Cost				(\$)			
1	Maintenance Cost	1.7%	\$82,883,273				\$1,409,016			
	Maintenance Cost Subtotal						\$1,409,016			

5) Other Costs											
							Annual Cost				
#	Item						(\$)				
1	Compliance Testing						\$150,000				
2	Security						\$160,000				
	Other Costs Subtotal						\$310,000				

6) Labo	6) Labor Costs										
						Full Labor	Annual Labor				
#	Personnel	#				Cost (\$)	Cost (\$)				
1	Associate Civil Engineer	0.5				\$173,384.60	\$86,692				
2	Water Plant Operator	3				\$136,749.18	\$410,248				
3	Water Operations Supervisor	2				\$141,935.48	\$283,871				
4	Water Production Superintendent	0.5				\$171,983.84	\$85,992				
5	Water Systems Technician II	2				\$78,581.88	\$157,164				
6	Electrician	2				\$104,177.17	\$208,354				
7	Laboratory Technician	0.5				\$85,522.93	\$42,761				
8	Assistant Chemist	0.5				\$110,646.90	\$55,323				
9	Clerical II/Receptionist	1				\$62,865.50	\$62,866				
10	Outside Lab Sample/Special Testing Allowance	-				-	\$25,000				
	Labor Subtotal	12.00					\$1,418,271				
	Phase 1 Total Annual O&M Cost						\$8,143,581				

Client: City of San Diego

Project: IPR/RA Demonstration Project AWP Facility Detail: Full-Scale Facility Electrical Load List - 15 mgd

Job No.: 2072-78220 Checked By: L. Voelz Date Checked: 4/9/2012

Date: 4/9/2012 Page No.: 1 of 1

Computed By: A.Goh

INPUT

						Pha	se 1						
										Loads			
#	Load	Volts	Phase	НР	KVA	kW	Total #	Operating	Standby	Operating Frequency	Demand	Current	VFD
	Major Process Equipment												
1	AWP Facility Influent Pumps	480	3	137		102	4	3	1	Continuous	100%		Yes
2	MF System Automatic Strainers	480	3	0.5		0.37	7	6	1	Continuous	100%		No
3	MF Backwash Pumps	480	3	30		22	3	2	1	1x30sec/30min/skid	22%		Yes
4	MF System Blowers	480	3	50		37	2	1	1	1x30sec/30min/skid	22%		Yes
5	MF System Air Compressors	480	3	15.0		11	2	1	1	Continuous	100%		No
6	MF CIP Recirculation/Drain Pumps	480	3	20		15	4	2	2	1x2hr/mo/skid	3.6%		Yes
7	MF System CIP Tank Heaters	480	3	24		18	3	2	1	1x16hr/mo/skid	28%		No
8	RO Booster Pumps	480	3	149		111	4	3	1	Continuous	100%		Yes
9	RO Feed Pumps	480	3	572		427	4	3	1	Continuous	100%		Yes
10	RO Energy Recovery	480	3	0		0	1	1	0	Continuous	100%		Yes
11	RO Flush Pumps	480	3	60		45	3	2	1	1 x 5min/wk/train	0.20%		Yes
12	RO System CIP Recirculation Pumps	480	3	40		30	3	2	1	2 x 3hr/yr/train	0.27%		Yes
13	RO System CIP Tank Heaters	480	3	24		18	3	2	1	2 x 16hr/yr/train	1.5%		No
14	UV	480	3	116		86	3	3	0	Continuous	100%		No
15	Finished Water Pumps					0				Continuous	100%		Yes
	Influent Pre-treatment Chemicals												
16	Sodium Hypochlorite Feed Pumps	115	1	0.5		0.37	4	3	1	Continuous	100%		Integral to
													Pump
17	Ammonium Hydroxide Feed Pumps	115	1	0.5		0.37	4	3	1	Continuous	100%		Integral to
													Pump
	RO Pre-treatment Chemicals												
18	Sulfuric Acid Feed Pumps	115	1	0.5		0.37	4	3	1	Continuous	100%		Integral to
													Pump
19	Antiscalant Feed Pumps	115	1	0.5		0.37	4	3	1	Continuous	100%		Integral to
													Pump
	AOP Chemicals	–											
21	Hydrogen Peroxide Feed Pumps	115	1	0.5		0.37	4	3	1	Continuous	100%		Integral to
													Pump
	Product Water Post-treatment Chemicals												
22	Coloium Chlorida Food Burner	115	1	0.5		0.27	2	2	1	Continuous	1000/		Internal to
22	Calcium Chloride Feed Pumps	115	1	0.5		0.37	3	2	1	Continuous	100%		Integral to Pump
23	Countie Code Food Burner	115	1	0.5		0.37	3	2	1	Continuous	100%		-
23	Caustic Soda Feed Pumps	115	1	0.5		0.37	3	2	1	Continuous	100%		Integral to Pump
	MF MC Chemicals												Pullip
25	Sodium Hypochlorite Feed Pumps for MF	115	1	0.5		0.37	1	1	0	1 x 15min/day/skid	14%		Integral to
23	MC	113	1	0.3		0.57	1	1	U	1 X 1311111/Udy/Skiu	14/0		Pump
	MF CIP and Neutralization Chemicals												rump
26	Sodium Hypochlorite Feed Pumps for MF	115	1	0.5		0.37	2	1	1	1 x 30min/mo/skid	0.9%		Integral to
20	CIP	113	1	0.5		0.57		1	1	1 x 30mm/mo/3kiu	0.570		Pump
27	Sodium Bisulfite Feed Pumps for MF CIP	115	1	0.5		0.37	2	1	1	1 x 30min/mo/skid	0.9%		Integral to
۷,	Neutralization	113	1	0.5		0.57		1	1	1 A Sommiy moy skild	0.570		Pump
28	Citric Acid Feed Pumps for MF CIP	115	1	0.5	1	0.37	2	1	1	1 x 30min/mo/skid	0.9%	1	Integral to
20	otatio recuir con rumps for wir cir	113	1	0.5		0.57		1	1	2 x 30mm/mo/skid	0.570	1	Pump
29	Caustic Soda Feed Pumps for MF CIP	115	1	0.5		0.37	2	1	1	1 x 30min/mo/skid	0.9%	1	Integral to
	Neutralization	110		0.5		0.57	-	_		55,, 5kid	0.570		Pump
	RO CIP and Neutralization Chemicals												- unip
30	Citric Acid Feed Pumps for RO	115	1	0.5		0.37	2	1	1	2 x 1hr/yr/train	0.09%		Integral to
30	CIP/Neutralization						1 -			,,,,,,	2.3370	1	Pump
31	Caustic Soda Feed Pumps for RO	115	1	0.5		0.37	2	1	1	2 x 1hr/yr/train	0.09%	1	Integral to
	CIP/Neutralization] -	_	_				Pump
	TOTAL			4,545		3,395							
				.,		-,,							

Volts - Typically 120, 208, 240 or 480

Phase - 1 or 3 (Usually 3 phase for motors except for 120 V chemical metering pumps)

HP, KVA, KW - Only one of these columns would be filled out (typically HP for motors, KVA for transformers, KW for heaters)

Total # - Total number of that particular load (EG. 3 RO Feed Pumps)

Operating - Total number of that particular load that runs during normal operations (EG. 1 RO Feed Pump runs during normal operations)

Standby - The additional number of that particular load that can run during emergency operations (EG. 1 additional RO Feed Pump runs during emergency operations)

Demand (HP loads) - The amount of time a load runs. If a pump runs continuously, the number will be 100%. If a pump runs occasionally then the % of the day the pump will run.

Demand (kVA loads) - The percent loaded a transformer is based on panel schedules.

Current - This column will be filled out by the electrical engineer based on the data in the other columns.

This page intentionally left blank.